Integration
The area (in sq. units) of the region
The area (in sq. units) of the region {(x, y) : x ≥ 0, x + y ≤ 3, x2 ≤ 4y and y ≤ 1 + √x } is
- 59/12
- 3/2
- 7/3
- 5/2
The integral is equal to: #03
The integral 0∫π √(1 + 4 sin2x/2 - 4 sinx/2) dx equals
- 4√3 - 4
- 4√3 - 4 - π/3
- 2π/3 - 4 - 4√3
- π - 4
The integral is equal to: #02
The integral ∫(1 + x - 1/x)ex + 1/x dx is equal to
- xex + 1/x + c
- (x + 1)ex + 1/x + c
- (x - 1)ex + 1/x + c
- -xex + 1/x + c
If the integral ∫ (5 tan x / tan x − 2)dx = x + a ln |sin x - 2 cos x| + k
If the integral ∫ (5 tan x / tan x − 2)dx = x + a ln |sin x - 2 cos x| + k, then a is equal to
- -1
- 2
- -2
- 1
If g(x) = 0∫x cos4t dt, then g(x + π) equals
If g(x) = 0∫x cos4t dt, then g(x + π) equals
- g(x) - g(π)
- g(x) / g(π)
- g(x) + g(π)
- g(x).g(π)
0∫π [cot x] dx, where [.] denotes the greatest integer function
0∫π [cot x] dx, where [.] denotes the greatest integer function, is equal to
- -π/2
- 1
- -1
- π/2
The area of the region bounded by the parabola (y – 2)^2 = x – 1, the tangent to the parabola
The area of the region bounded by the parabola (y – 2)2 = x – 1, the tangent to the parabola at the point (2, 3) and the x-axis is
- 3
- 6
- 9
- 12
The integral is equal to: #01
The integral \( \int \dfrac{2x^{12}+5x^9}{(x^5+x^3+1)^3} dx \) is equal to:
- \( \dfrac{-x^5}{(x^5+x^3+1)^2} + C \)
- \( \dfrac{x^{10}}{2(x^5+x^3+1)^2} + C \)
- \( \dfrac{x^5}{2(x^5+x^3+1)^2} + C \)
- \( \dfrac{-x^{10}}{2(x^5+x^3+1)^2} + C \)