If the two circles (x-1)^2 + (y-3)^2 = r^2 and x^2 + y^2 - 8x + 2y + 8 = 0 intersect in two distinct point
If the two circles (x-1)2 + (y-3)2 = r2 and x2 + y2 - 8x + 2y + 8 = 0 intersect in two distinct point, then
- 2 < r < 8
- r = 2
- r > 2
- r < 2
Answer
|r1 - r2| = C1 C2 for intersection
⇒ r - 3 < 5
⇒ r < 8 ......... (1)
and r1 + r2 > C1 C2
⇒ r + 3 > 5
⇒ r > 2 ......... (2)
From (1) and (2), 2 < r < 8.
The correct option is A.